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Abstract  

The  Kle in-Gordon equat ion  is cast, using its two-componen t s  version, into a form which 
exact ly parallels the Dirac equat ion and which is used to discuss the  Kle in -Gordon  analogs 
of the uni tary and nonuni ta ry  t ransformat ions  o f  physical interest  appearing in the latter. 
In particular, it is found tha t  massless zero-spin particles do not  exist within the  frame- 
work o f  this theory.  

1. Introduction 

Massless zero-spin particles, i.e., Goldstone bosons (Goldstone, 1961) have 
been most important in field theoretical research during the past few years. In 
this paper we discuss a closely related topic, namely, the description of a massless 
zero-spin particle within the framework of relativistic quantum mechanics. 

As is well known, a quantum mechanical description of spin-1/2 and spin-1 
massless particles can easily be obtained from the Dirac and Kemmer equations, 
respectively, by taking the ultrarelativistic limit (i.e., the limit tpl>> m) in a 
suitable manner in each case (in fact, by just setting m = 0 in the Dirac case). 
A unified way of doing this, however, is naturally provided by the Cini-Touschek 
(1958) transformation, as recently stressed by us (Saavedra, 1973). 

In the present paper we want to extend this technique to the Klein-Gordon 
equationt, 

([] + m2)~(x) = 0 ( 1 . 1 )  

For this purpose, we use the two-component version of Eq. (1.1), in which the 
time derivatives appear in the first order only. This is a formalism essentially 
due to Taketani and Sakata (1940) and Case (1954), although it has become 

"~ We use the  me t r i cgoo  = --gkk = +1 and set h = c = 1. 
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customary to refer to it as the "Feshbach and Villars (1958) formalism" in the 
literature. The resulting wave equation is the Hamiltonian equation, 

i~teb = H K G ~  (1.2) 

with the operator HKG given by 

HKG = -(V2/2mX~r3 + io2) + mo 3 (1.3) 

the o's being Pauli matrices. 
Now, introducing the angular momentum operators 

x - ½ e ,  " r x x = i x  (1.4) 

and working in momentum space, the Hamiltonian (1.3) can be rewritten in 
the form 

HKG = 2(ip2/2m)r2 + 2(p2/2m + m)r 3 (1.5) 

which can be compared with the Dirac Hamiltonian, 

HD = a ' p  + 3m (1.6) 

when written in terms of the angular momentum operators J, 

• a - p  3 et. PI' J2 =- J3 - J x J = iJ (1 .7)  
J1 = 2 I p -z3 2-~pi' 2-' 

which we have introduced previously (Saavedra, 1970, 1973), namely, 

n o  = 21plJ1 + 2m J3 (1.8) 

The analogy in the structure of the Hamiltonians (1.5) and (1.8) is further 
stressed by the introduction of the notation 

p2 E 2 + m 2 
e=- i  M=- . - ,  E=+x/p 2 +m 2 (1.9) 

2m' 2m 

in terms of which Eq. (1.5) reads 

H K G  = 2P'/" 2 + 2/]//7 3 (1.10) 

and by remarking that the following relation is satisfied [Eq. (1.9)] 

E 2 =p2 +m 2 =p2 +M a (1.11) 

It is the purpose of this paper to exploit this remarkable analogy to obtain 
for the Klein-Gordon case the transformations corresponding to the unitary 
[e.g., Foldy and Wouthuysen (1950)] and nonunitary (e.g., "Lorentz") trans- 
formations of physical interest appearing in the Dirac case. Having done this, 
we shall show that a nontrivial difference between the two theories arises 
because of the correspondence J1 -+ r2 (instead of ra ) exhibited by Eqs. (1.8) 
and (1.10). In particular, by exploring the extreme-relativistic limit of the 
Klein-Gordon equation, we shall show that massless zero-spin particles do not 
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exist in the framework of relativistic quantum mechanics, unless their charge 
density, p(x), also vanished identically. It is dear, however, that the latter 
objects would have no meaning within this theory, as they would have no 
measurable properties, because the theory has no further degrees of freedom 
allowing for the description of additional quantum numbers. 

2. Rksum~ o f  the Taketani-Sakata-Case Formalism 

As it is essential for our discussion, we shall quote here the results of the 
Taketani-Sakata-Case formalism we shall be using in what follows. 

The wave function ~(x) [Eq. (1.3)] is written as 

• (x) = { O°(x)t (2.1) 

where 

¢o = ½[¢ + (ilm)at¢] 

Xo = ½ IV, - (i/m)a,4,] ( 2 . 2 )  

with ~ satisfying Eq. (1.1). The Klein-Gordon density 

p(x) = (i/2m)~*(x)3 t~(x) (2.3) 

reads then 

p(x) = [q~o[2 _ [Xot2 = @+(x)aa@(x ) (2.4) 

which suggests the convenience of introducing the following definition for the 
scalar product in the space of the vectors ~(x): 

(~a(x)lcb:(x))= : (:b:(x), aaeb2(x))---- fdax~bl+(x)a3cb=(x) (2.S) 

In particular, the norm of the vector • is now 

N(¢~) = f d3x(l(aol = - f×ol 2) (2.6) 

To simplify the notation we shah omit the integral sign in what follows, i.e., 
we shall write simply 

N(@) = 10ol 2 - IXo[ 2 = ~+a3~ (2.7) 

implying, of course, Eq. (2.6). 
The mean value of an operator :2 is defined as 

(gZ)= : (~,  o3:2~)/N(C~ ) (2.8) 

and the requirement that it must be a real number implies that :2 must be a 
pseudo-Hermitian operator, satisfying 

:2 = aagZ+aa (2.9) 

The Hamiltonian (1.3) is clearly a Hermitian operator in this formalism (we 
shall omit the prefix "pseudo" in what follows). 
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In the same way, we shall say that the operator U transforming 

~5~q5'= U~ 

is (pseudo) unitary if the transformation preserves the norm [N(ep) = N(~b')], 
i.e., if the operator U satisfies the relation 

U -1 = a3U*a 3 (2.10) 
As is well known, the Klein-Gordon amplitude ~(x) is not a probability 

amplitude because the corresponding density [Eq. (2.3)] can assume negative 
values; in the Taketani-Sakata-Case formalism, on the other hand, p(x) [Eq. 
(2.4)] can be understood as a charge density and therefore can assume negative 
values without running into contradictions. To see this it is only necessary to 
introduce the electromagnetic field in the usual way 

e• -+P~z - e A .  

and verify by direct calculation that if the function q~(x) is a solution of the 
resulting wave equation for a given sign of the electric charge, then the function 

% ( x )  - Ole*(x)  (2.11) 

satisfies the same wave equation for the opposite sign of the charge: ~c is the 
charge-conjugated wave function to q). Explicitly, using Eq. (2.11) one finds 

Pc = ~co3~c = [Xol 2 -[qSol 2 = - P  (2.12) 

which shows that p(x) can indeed be understood as an electrical charge density. 
For later reference, we finally also quote here the explicit form of the free- 

particle solution of Eq. (1.2) for positive energy and normalization (+1), 
namely, 

1 [ E+m~ ip x 
~(x) = ~ ~ -E  + m! /e -  " (2.13) 

3. The Foldy-Wouthuysen and Cini-Touschek Transformations 

To start with, let us briefly recall our technique (Saavedra, 1970) for 
obtaining these transformations in the Dirac theory. Remarking that the 
Hamiltonian (1.8) does not contain the operator J2, one defines the operator 

a'PO__ 
T = exp (iJ20)= exp /3 tpl 2 ]  (3.1) 

to "rotate" the (Dirac's) Hamiltonian equation 

(2 I p l J1 + 2m J3 - Po)~(P) = 0 (3.2) 

into an equation which does not contain either J1 or J3 by suitable choices of 
the parameter ("angle") 0. This transformation is most easily performed owing 
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to the fact that the J operators are angular momentum operators and therefore 
satisfy the relation 

eiJl°Jke-iSJ° =Jk cos 0 - e j k l J  l sin 0 (3.3) 

If the angle 0 is chosen such that 

tan 0 = Ip l/m =- tan 0z~ w (3.4) 

the Hamfltonian (1.8) is transformed into 

H Fw = z13E-- ~ (3.5) 

This is the Foldy-Wouthuysen (1950) transformation, suitable for the discussion 
of the nonrelativistic limit of  the Dirac equation. If, on the other hand, the 
angle 0 is chosen such that 

tan 0 = - m / l p l  ~ tan O cT (3.6) 

the Hamiltonian (1.8) reduces to 

HCD T = 23"1 E =  [ (~ 'p ) / Ip i ]E  (3.7) 

which yields the Cini-Touschek (1958) equation, suitable to discuss the extreme- 
relativistic limit o f  the theory. Notice that  the angles (3.4) and (3.6) satisfy the 
relation 

tan 0D Fw" tan O cT = --1 (3.8) 

or, equivalently, 

fO gw -- O cT ] = rr/2 (3.9) 

Let us then apply this technique to the Taketani-Sakata Eq. (1.2), with the 
Ham£ltonian given by Eq. (1.5). 

The appropriate rotation operator is now 

T = e irlO = e ialO]2 (3.10) 

Defining? 

~(p) = T4(p) (3.11) 

and, using Eq. (3.3), this transformation leads to 

[(i E2+m2'~m. p2 sin O) a 2 ~ cos 0 + 

[E2+m2 2 ) 1  +°3~c°sO-i~msinO -Po ~ ( p ) = 0  

(3.I2)  

t We work with plane wave solutions, qJ(x) = 0(p)e -ip .x, and the wave equation we 
consider (in momentum space) is Hq~(p) = pog)(p). 
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If we choose to eliminate 02, the corresponding angle is given by 

tan0 = - i p 2 / ( E  2 + m Z ) ~ t a n  FW 0KG (3.13) 

yielding the Hamiltonian 

HKF~ = e3E (3.14) 

which is identical in structure to H~ w [Eq. (3.5)]. This transformation was 
first discussed by Case (1954). 

The transformation (3.10) with the angle (3.13)is a unitary transformation, 
i.e., it satisfies Eq. (2.10), as it is readily proved by noticing that the angle 0 is 
imaginary; the norm is therefore conserved. 

If we now choose to eliminate % in Eq. (3.12), recalling the spin-1/2 case 
we should expect to get the analog of the Cini-Touschek equation, i.e., an 
equation suitable to study the extreme relativistic limit of the Klein-Gordon 
equation. This turns out not to be the ease, however. 

Indeed, the term containing o 3 in Eq. (3.12) is eliminated with the choice 

tan 0 = - i ( E  2 + m 2)/p2 - CT = tan 0KC (3.15) 

which satisfies 

CT tan 0KG • tan 0KF~ = --1 (3.16) 

in analogy with Eq. (3.8); in this sense we carl call, therefore, the corresponding 
transformation a Cini-Touschek transformation. This transformation, never- 
theless, has no direct physical meaning. For, defining CT 0 KG ------ iCO, Eq. (3.15) 
yields 

[tanh col = (E 2 + m2)/p2; > 1 (3.17) 

for all physical(real) values o fm and tpl, and therefore this transformation 
does not exist. It is also clear from Eq. (3.17) that this transformation can 
describe tachyons, with 

m = im ,  (3.18) 

where m ,  is real. In this interpretation the resulting Hamittonian is 

= -2 2e 0 . 1 9 )  

v~hich should be compared with Eq. (3.7), where the operator J1 (and not J=) 
appears. Notice also the minus sign appearing in Eq. (3.19), which does not 
appear in Eq. (3.7); we shall return to this point in Sec. 4. 

Finally, to further stress the analogy between the Dirac and Klein-Gordon 
theories, we remark that the following relation holds: 

FW + T HKG COS 0 /afKO sin 0 = HKG (3.20) 

with the angle 0 given by Eq. (3.13), and that an identical equation holds for 
the Dirac case (Saavedra, 1967). 
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4. A Geometrical Analogy 

The results (3.15)-(3.19) are most easily understood though a geometrical 
analogy which follows from the observation that the Foldy-Wouthuysen (F-W) 
and Cini-Touschek (C-T) transformations do not change the energy, i.e., they 
are transformations leaving invariant the quadratic form 

E 2= tpL 2 +m z (4.1) 

The geometrical analog of these transformations is therefore the set of (two- 
dimensional) rotations in the plane (m, I p I), that is, the transformations 

m' = m cos 0 + lPl sin 0 (4.2a) 

Ip'[ = - m  sin 0 + [pl cos 0 (4.2b) 

If we want to consider the nonrelativistic limit, i.e., (physically) the limit 
Ip[ ~ m, the corresponding geometrical analog is the rotation [Eq. (4.2b)] 
given by 

tan 0 = Ipl/m = tan 0 ~  v (4.3) 
for which Ip'l vanishes; this is indeed the F-W angle, as given by Eq. (3.4). 

We now again use the analogy between the Dirac and Klein-Gordon theories 
pointed out in the Introduction [Eqs. (1.8)-(1.11)] : the corresponding geo- 
metrical analog for the Klein-Gordon case is obtained from Eqs. (4.2) with the 
replacernents 

m ~ M ,  Ipl-+P (4.4) 

with M and P defined by Eqs. (1.9). 
The rotation (in this new plane) for which 

P '=  0 (4.5) 

is given by 
tan 0 = P/M = +i pZ/(E2 + m 2) = - t a n  oF w (4.6) 

that is, is given by Eq. (3.13) except for a minus sign; we shall show in Sec. 5 
that this change in sign is indeed required by the formalism. 

The physical parameters of the theory are of course m and I pl, and not M 
and P, and therefore in order to give a physical interpretation to Eq. (4.6) we 
must first express Eq. (4.5) in terms of IP'f, which is trivially done using Eq. 
(1.9) to obtain Ip'l = 0, which indeed confirms that this transformation is 
useful to study the nonrelativistic limit of the Klein-Gordon theory. 

The extreme-relativistic limit in the Dirac case is obtained here by setting 

m '=  0 (4.7) 

that is, by the rotation [Eq. (4.2a)] 

tan 0 = -m/lPl  = tan O CT (4.8) 

where the last equality is Eq. (3.6); this is the C-T angle. 
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The corresponding rotation in file Klein-Gordon case yields 

M' = 0 (4.9) 

and is given by the angle 

tan 0 = - M / P  = + i(E 2 + m2)/p 2 = - t an  0CK~ (4.10) 

where again the change in sign is expected (see Sec. 5). To interpret this result 
we once more use Eq. (1.9) to obtain [from Eq. (4.9)] 

p,2 = _2m 2 (4.11) 

which says that the corresponding transformation is a tachyon transformation 
with v = V~, that is [Eq. (3.18)], re(v) = m .  and E 2 = m2.. Indeed, using Eq. 
(4.11), Eq. (1.5)yields the wave equation 

- a  2 ¢ = _+ q~ (4.12) 

which is identical in structure to the Hamiltonian equation arising from Eq. 
(3.19); the minus sign in the left-hand side is thus seen to be a consequence 
of Eq. (4.1 t). 

To summar~e, we have proved that, in spite of the analogous structure of 
the corresponding Hamiltonians [Eqs. (1.8) and (1.10)], the C-T transformation 
does not lead to the extreme relativistic limit of the Klein-Gordon equation. 
This failure of the analogy will be now traced down to the appearance of the 
operator re in Eq. (1.10), instead of the operator r t  which would be expected 
from Eq. (1.8). This we do in See. 5. 

5. Nonunitary Transformations 

Let us consider again Eqs. (1.8) and (1.10). The operators J appearing in 
the former can be written in the form 

where the operators 

Z1 - (¢t" p)/Ipl, 

satisfy a Pauli algebra, 

j = _~r. (5 .1)  

~2 -= -i/3 (~" p)/[p t, E 3 -= ~ (5.2) 

FiE k = ieimZ z + ~/~ 

as can be readily verified, thus making the J operators the exact analogs of the 
"¢ operators of Eq. (1.10). 

Further, we remark that Dirac's original procedure to obtain his Hamfltonian 
is based on the fact (in our language) that the anticommutator 

(Yl, Y3 } = 0 (5.3) 

which implies that 

(HD)2  = [p[2 + m 2 = E2  (5.4) 
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The corresponding Klein-Gordon analogs are the equations 

(r2,  r3 } = 0 (5.5) 

and 

(HKG)2 =p2 +M a = E z (5.6) 

Therefore, in the above sense P and M are the analogs in the Klein-Gordon 
theory of Ip I and m, respectively, in the Dirac theory. 

Let us now consider the Dirac equation written in its manifestly covariant 
form, 

(~/Up u - m)qJ(p) : 0 

which in our notation is 

(2ilp I J2 - 2poJ3 + m)t~(p) = 0 (5.7) 

As Eq. (5.7) is obtained from the corresponding Hamiltonian equation by 
multiplying the latter throughout by the operator 2J3(=/3), we obtain the 
Klein-Gordon analog of Eq. (5.7) by multiplying the Hamiltonian Eq. (1.2) 
by the operator 273, which yields the result 

(-2/P71 - 2Pot 3 +M)~p)  = 0 (5.8) 

and shows that in this case the correspondence 3"2 -+ -71 arises together with 
the already known J3 -+ 7"3" 

Now, it is clear that, given an angular momentum algebra (J, say), the 
algebra obtained through the relabeling 

1-+2, 2 - + - 1 ,  3-+3 (5.9) 

is also an angular momentum algebra; this explains the necess i t y  of the minus 
sign appearing in Eqs. (4.6) and (4.10), as the rotation operator (3.10) contains 
the operator 71 . 

After these considerations we now return to the problem of finding a trans- 
formation suitable for the description of the extreme-relativistic limit of the 
Klein-Gordon equation, which, by comparison with Eqs. (3.2) and (3.7), we 
can expect to obtain by eliminating the operator 73 in Eq. (5.8). Before doing 
this, however, we briefly recall the nonunitary transformations associated with 
Eq. (5.7). 

The transformation connecting the laboratory system (p = p) with the rest 
system (p = 0) in the Dirac theory is conventionally (and somewhat improperly) 
called a Lorentz transfolmation. In our J formalism this is the h y p e r b o l i c  
rotation (i.e., the nonunitary transformation) 

T = e idl° (5.10) 

which eliminates the operator J2 in Eq. (5.7) with the choice of the angIe 

tan 0 = i IPI/Po = tan 0 h (5.11) 
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or, using the conventional notation 0 = iw, 

tanh coLD = ]Pl/P0 (5.12) 

On the other hand, if one chooses to eliminate the operator d 3 in Eq. (5.7) 
with the rotation (5.10), the corresponding angle is given by 

tan 0 --- i p o / I p t  (5.13) 

or 

tanh co =Po/Ipl  (5.14) 

which leads to a wave equation describing a "transcendent" tachyon (Saavedra, 
1970), i.e., a tachyon with vanishing energy (p2 = _m 2 ' v = ~). 

The geometrical analogs of these transformations are obtained by remarking 
that they leave invariant the quadratic form 

m 2 =p~ - I p l  z (5.15) 

that is, they are the set of the (hyperbolic) rotations in the plane (P o, i lpi), 
namely, the rotations 

Po =Po cos 0 + ilpl sin 0 (5.16a) 

itp'l = -Po  sin 0 +i tpl  cos 0 (5.16b) 

The rotation for which [p'l vanishes (rest system) is given by 

tan 0 = i Ip i/Po = tan OLD (5.17) 

that is, by the Lorentz angle. On the other hand, the rotation for which p~ 
vanishes is given by 

tan 0 = iPo/Ip l  (5.18) 

which is Eq. (5.13) and is a tachyon transformation, as can be seen from Eq. 
(5.16b), which with the angle (5.18) yields the result 

ilp'[ = - m  (5.19) 

from which the relation E = 0 follows ("transcendent" tachyon). 
Let us now consider the corresponding Klein-Gordon analog, i.e., the set 

of rotations [in the plane (Po, iP)] leaving invariant the quadratic form 

M 2 = p02 _ p2 (5.20) 

The rotation for which P' vanishes, i.e., for which fp'[ = 0, is given by the angle 

~ L  ~ tan 0 = iP/P o = - p Z / 2 m P o  - tan 0KC (5.21) 

which we can expect to be the (nonunitary) transformation taking the Klein- 
Gordon equation to its rest-system form-i.e., the Klein-Gordon "Lorentz" 
transformation. 
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To show that this is indeed the case we need only rotate Eq. (5.8) with the 
operator 

T = e ir20 (5.22) 

which yields the result 

(o  I [(p2/2m) cos 0 +Po sin 0] + o 3 [(p2/2m) sin 0 - P o  cos 0] +M}~ = 0 

(5.23) 
The operator a 1 is therefore eliminated by the choice of angle 

tan 0I~G = _p2/2mp ° 

which is Eq. (5.21). The resulting wave equation indeed has the rest system 
form, 

o3~ = +~ (5.24) 

and is the F-W equation already considered [Eq. (3.14)]. However, the corre- 
sponding transformation [Eq. (5 £2)] is nonunitary in this case, as the angle 0 
is real and we have 

O 3 T+o3 = T 

instead of Eq. (2.10). The norm is consequently not invariant under this trans- 
formation, and we find by explicit calculation [using Eq. (2.13)], 

E 2 + m 2 M 
~+a3~ . . . .  (5.25) 

2 m E  E 

Recalling the corresponding result (re~E) in the Dirac theory and its physical 
interpretation, we therefore conclude that the transformation (5.22) is "Lorentz" 
only in the sense that it is a nonunitary transformation taking Eq. (5.8) to its 
nonrelativistic (rest-system) form (this explains our use of quotation marks to 
refer to it). 

We can now go back to Eq. (5.20) and consider the rotation given by 

tan 0 = iPo/P = 2rnpo/p 2 (5.26) 

for which we have p~ = 0 and/P' = -M. We remark that the latter result is 
sufficient to obtain the former [Eq. (1.11)], and that [using Fxls. (1.9)] it leads 
to the solution m = 0, which is the condition to obtain the extreme-relativistic 
limit (Eq. (4.7)]. 

In the corresponding physical case we find that the angle given by Eq. 
(5.26) eliminates the operator o 3 in Eq. (5.23), yielding the equation (~ = T¢) 

--O" 1 ~ = ~ (5.27) 

for both signs of the energy; this equation is then suitable for the description 
of the ultrarelativistic limit (i.e., Ip I >> m) of the Klein-Gordon equation. This 
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assertion can be readily verified by directly taking the limit Jpl >~ m in Eq. 
(5.8). We find first 

( 03  + = 0 

which can indeed be given the form (5.27) upon multiplication by the operator 
02 • 

The solutions of  Eq. (5.27) have the form 

[a result which can also be obtained directly from Eq. (2.13) in the limit 
Ip[ >> m] with the norm 

N(~) = (q~, o3~ ) = 0 (5.29) 

i.e., the extreme-relativistic Klein-Gordon states have vanishing norm. In the 
formalism we have used in this paper,  on the other hand, the norm is under- 
stood as an electrical charge density; the interpretation of  the result (5.29) is 
therefore that for a sufficiently fast particle the electrical charge disappears, 
that is, that the electrical charge is not conserved. We must conclude therefore 
that these states do not exist?. 

Now, an extreme-relativistic Klein-Gordon particle is a massless zero-spin 
object, i.e., a Goldstone boson; our conclusion is therefore that  there are no 
Goldstone bosons in relativistic quantum mechanics. 

We can still go a step further using a "correspondence principle," relating 
quantum (second quantized) fields to quantum (first quantized) amplitudes. 
We recall that  in quantum field theory Goldstone bosons must  appear when- 
ever we have a spontaneously broken symmetry,  except for the case of  gauge 
fields [Higgs' Theorem (Higgs, 1964)]. From this point of  view we can hence 
conclude that  the only physically meaningful fields are the gauge fields. 
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